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The axial and radial gradients of the tangential velocity distribution are calcu- 
lated from prescribed secondary flow functions on the basis of a zero-order 
approximation to the momentum equations developed by Lewellen. It is shown 
that secondary flow functions may be devised which meet pertinent physical 
requirements and which at  the same time lead to realistic tangential velocity 
gradients. 

The total-temperature distribution in both the axial and radial directions is 
calculated from such secondary flow functions and corresponding tangential 
velocity results on the basis of an approximate turbulent energy equation. The 
method employed for the solution of this equation stresses the equivalence of 
the vortex tube to counter-current systems with transverse diffusion such as 
distillation columns and heat exchangers. 

A n  availability function is derived that permits the evaluation of vortex tube 
performance on the basis of velocity data. 

Turbulent diffusivities resulting from the quantitative use of the tangential 
velocity approximation are shown tlo agree with those derived from the total- 
temperature calculations. 

1. Introduction 
The theory of the tangential velocity distribution in the vortex tube has been 

treated previously but primarily in relation to tubes with a large radial influx 
of fluid. For this case a satisfactory link between circulation and radial Reynolds 
number has been established on the assumption that the flow conditions in the 
tube, excluding boundary layers, are independent of axial position (Rosenzweig , 
Ross & Lewellen 1962). 

In  longer vortex tubes with inlet nozzles a t  only one end, the above (quasi-) 
two-dimensional approach is no longer useful since, on the one hand, the 
tangential velocity takes a shape close to that of the forced vortex, and on 
the other hand, it shows a significant axial gradient; at  the same time the 
radial velocity drops considerably and becomes much lower than the axial 
velocity. 

A solution to this problem has been derived by Lewellen (1964) for the incom- 
pressible case as an extension of a study of tubes in which the radial a,nd axial 
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flows were of the same order of magnitude (Lewellen 1962). I n  the present work 
the zero-order approximation of this expansion is examined. For that purpose 
the equations have been transformed and expressed in terms of experimentally 
available parameters. 

It should be noted that the theory is developed for incompressible fluid flow 
while the examples used are compressible fluid cases. As shown by Anderson 
(1963) and Rosenzweig, Lewellen & Ross (1964) this may not lead to serious 
errors under conditions of interest here. 

A complete theoretical description of the temperature distribution in the 
vortex tube is a very complex problem, owing to its three-dimensional character. 
However, Reynolds (1961) and Bruun (1967, 1969) discussing the relative 
importance of the turbulent contributions to the separation effect, have reached 
a qualitative understanding of the mechanism. Furthermore, attempts have 
been made to calculate the radial temperature gradient using essentially two- 
dimensional methods (Deissler & Perlmutter 1960; Hartnett & Eckert 1957; 
Takahama 1965), while in other cases the influence of the axial temperature 
gradient has been studied (Fulton 1950; Gulyaev 1966; Kassner & Knoernschild 
1948; Lay 1959; Scheper 1951; Sibulkin 1962; Suzuki 1960). 

The present approach permits both axial and radial gradients of the tempera- 
ture to be taken into account in a comparatively simple a8nd accurate way. The 
discussion is limited to long tubes with weak radial inflow as is the section on the 
velocity distribution. The treatment is based on a simplified energy equation 
which has been derived earlier by Reynolds (1961) and Bruun (1967, 1969). For 
the solution of this equation, which is a partial differential equation in the axial 
and radial co-ordinates, a method closely related to the one employed for mass 
separation in two-component gas mixtures in rotating flow (Cohen 1951) is used. 
As a step in the solution, a first-order differential equation in the axial co-ordinate 
is obtained, which is equivalent to the governing equation for an ordinary 
counter-current heat exchanger. Previous workers have already noted the 
equivalence of the counter flow in vortex tubes to counter-current heat- 
exchangers (Scheper 1951; Suzuki 1960; Gulyaev 1966) and used it for a descrip- 
tion of the separation process; assumptions about the heat exchange rate across 
the boundary between the streams have been made and mean values of stream 
temperature employed. I n  the present approach no assumptions about the rate 
of heat exchange, except that it is proportional to the turbulent thermal dif- 
fusivity, are necessary. Furthermore, sufficient information is embodied in the 
first-order differential equation that an approximation to both the radial and 
axial temperature gradients is obtained as a result of the calculations. 

In  the study, the total temperature is employed as the dependent variable 
with the total-enthalpy as the quantity transported. The velocity field is assumed 
to be known throughout the tube region under consideration. This region does 
not include any boundary layers; it is identical with the region considered in the 
velocity study ( 5  2 ) .  The analytical results obtained in that section concerning 
velocity distributions are applied in the temperature study. 

It is generally accepted that the vortex tube is a wasteful cooling machine; it 
has not, however, been completely clear why this must be so. Here, an equation, 
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which exposes the performance criteria quite well, is derived on the basis of an 
approximate availability function and with the use of the energy equation 
adopted in the temperature study. 

2. The tangential velocity distribution 
2.1.  Theory 

The governing equations are the continuity equation and the Navier-Stokes 
equations for the velocity components in cylindrical co-ordinates. From these 
four equations Lewellen ( 1962) eliminates the pressure, introduces the circulation 
2n-f = 2nv"r and the axisymmetric stream function 

a$px  F ur and a$/ar = - wr (1)  

+--, (2) 

and obtains the following two partial differential equations where all quantities 
are dimensionless a+ar a ~ 1 . a ~  211 a2r a2r 

_ - _ _ -  
a[ a7 a7 a[ - Re ar2 2Re at2 

Here I? = fi/rs and $ = $/+, are normalized circulation and stream functions 
respectively; 5 = z/x, is a normalized axial position and 7 = ( r / rJ2 measures the 
radial position as the square of a normalized radius. Furthermore, 

Ro = $,/(I?,rJ and Re = $,/(vSzs) 

are Rossby and Reynolds numbers respectively, while a = (rs/zs)z is the square 
of a ratio of characteristic lengths. v is the kinematic viscosity; it  is generally 
accepted that the flow in the tubes is turbulent; it  will be assumed below that 
the above equations apply to this case unaltered with Re interpreted as a constant 
turbulent Reynolds number. 

With a suitable choice of reference parameters Lewellen (1964, p. 91)  has 
discussed the series expansion of ( 2 )  and ( 3 )  in terms of the Rossby number, 
under conditions where u < w < v. In Linderstrom-Lang (1970a)  (referred to 
as (I) below) the resulting zero-order approximation has been transformed on 
the basis of the following set of reference parameters (cf. figure 1 )  

N 

r, = rp, z, = I, I?, = rp0 E fip0rp, and $, = P, ( 4 )  

where rp is the tube radius, 1 the length of the tube section under consideration, 
i.e. the length of region I (figure 1 )  which, as will become clear below, can be 
chosen arbitrarily. 2nFp, is the circulation at  the periphery near the nozzle (and 
Cp0 the corresponding tangential velocity). 27rF is the total volume flow through 
the tube. The resulting equations are 

11-2 



164 C. U .  Linderstrsm-Lang 

Here Ro = F/(l?Dorp), Re Ja = F/(vZ) = F/(vr19) x Ja, (7 )  

while CL = (rp/Z)z, 7 = ( r / rp )2 ,  and 5 = z/Z; furthermore, in ( 2 )  and (3) and $ 
are approximated by 

I -- 
FIGURE 1. (a )  Vortex tube with schematic stream line pattern and boundary of region I 
(two possibilities indicated). ( b )  Diagram of region I; arrows indicate axial and radial flow 
components. 

where Po, rll, foo, andf,, are functions of 7. Re, is a radial Reynolds number so 
chosen that Re,./(Re.,/a) is the ratio of the total radial volume flow a t  ro, the radius 
at  which the axial velocity changes sign, to the total volume flow through the 
t'ube (27rF). 

The validity of (5) and ( 6 )  is restricted to rll < 1 and Re,/ReJa xfll < 1 (see 
Lewellen 1964). This may be achieved in the experimental cases to be considered 
by restricting attention to short tube lengths, i.e. by choosing ,/a large enough; 
that rll is reduced by this choice is seen by inspection of (5) and (6) where Ja rll 
is invariant to changes in Ja. 
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2nl?,, is seen from (8) to be the axial gradient of the circulation. Setting 
rll = 0 in ( 5 )  gives the zero-order approximation employed in previous two- 
dimensional treatments (e.g. Deissler & Perlmutter 1960). r0 describes the shape 
of the circulation in the radial direction, at 5 = 0. fll(.cur) determines the shape 
of the radial flow function in the radial direction ( fll = 1 at 7 = qo, i.e. r = ro),  
while f A o  ( E afoo/arcc w) describes the axial flow as a function of 7, a t  5 = 0. 

2.2. Results 

In order to solve the equations presented above with respect to I? suitable 
secondary flow functions, too and fll, have been devised; details are given in (I). 
Here it suffices to stress that the successful use of equations ( 5 )  and (6) is condi- 
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FIGURE 2.  ( a )  Typical examples of prescribedf& functions plotted against 7. ( b )  The same 
integrated with respect to 11 to yield the axial velocity function f&;  abscissa 2/11. 
1/11, = ( T & , , ) ~  = 2.5. Case 486, cold flow fraction p = 0.034; case 495, p = 0.252. 

tional on the existence of foo functions that meet the rather restrictive require- 
ments imposed upon them. First, that the resulting rll must show certain 
characteristic features common to almost all experimental I’ distributions, 
namely, that r decreases along the tube within an annulus bounded approxi- 
mately by 7 = yo (where w changes sign) and the periphery (figure l) ,  while it has 
a tendency to increase in the inner cylinder. These conditions limit the shape of 
flo(cc ( l / r )  awl&) to patterns such as those shown in figure 2 (a). In addition, it is 
necessary tha t  fAo = 0 at qo (where w = 0), and, from a mass-balance considera- 
tion, that 

/)AOd7 = - ( l - P )  

(where ,u is the cold flow fraction, i.e. the fraction of flow through the cold exit 
(figure 1)). Furthermore, in accordance with experiment, the axial velocity, w, 
shall have a maximum (and therefore f A o  a minimum) at, or close to, the 
periphery. Finally, the boundary of region I is so chosen, that the total volume 
flow through the region enters at = 0 between the radius where the axial 
velocity is zero and the periphery, i.e. that 
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Examples of axial flow functions? f&, for two different cold flow fractions are 
given in figure 2 (b) .  

The radial flow function? fll (equation (S)), which is not well determined 
experimentally? has been approximated by an exponential function in 7 with 
a maximum a t  T~ and falling off to zero a t  the axis, and to  a negligible level at  

3 -]L 
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FIGURE 3. (a) ,  ( b )  Non-dimensional tangential velocity w,, = and ( c ) ,  (d), non- 
dimensional tangential velocity gradient vll = I'll/&; as functions of 47. Also shown, cor- 
responding secondary flow functions, a@/&,-, a t  g = 0 and 6 = 1. Re Ja (equation (7) )  = 15, 

(a )  and (c). Ratio of radial flow t o  total flow (equation (8)) Re,./Reja = 0.055; 
RO (equation (7)) 0 0.040 0.090 0.124 

( b )  and (d ) .  Ro = 0.090. ReJRe ,/a = -0.055 0 0.0275 0.055 0.110 

p = 0.01, l/q, = 3. 

Curve c021 C L Z I  r2,ai [WI 

Curve ~ 2 ,  - I J  [2,01 r2,11 r2.21 p. 31 

the periphery. Thus, the choice of fll has been somewhat arbitrary; however> 
this has had little consequence for the determination of the axial gradient of I? 
(see figure 3 (d) ) .  

Calculated distributions of wo and wll (dimensional tangential velocity and 
gradient), with the effects of varying either the Rossby number or the radial 
flow level, are shown in figure 3 (a) ,  ( c )  and figure 3 ( b ) ,  (d), respectively. The effect 
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on rll (or vI1) of varying the Reynolds number Re follows directly from (5) and 
(6); they are seen to be inversely proportional. 

Data for some of the experimental cases on which the calculations have been 
based are given in table 1. 

-~ 

Y, Approx. 2nF wupo flu90 a(z/r,) 
No. p ern l / T o  g/sec cmjsec Ro a t r  = r p  Ec 

Hartnett di Eckert, I 0 3.8 2.5 330 2.4 lo4 0.08 0.027 0.20 
Lay, 30 psig I11 0 2.5 3 230 2.9 lo4 0.09 0.024 0.28 
Bruun VII 0.23 4.7 2 120 1.8 lo4 0.03 0.048 0.11 
Scheller & Brown VIII 0.5 1.25 3 14 2.2 lo4 0.04 0-048 0.15 
Takahama IX 0.6 3.9 2-5 60 2-1 lo* 0.02 0.051 0.10 
Takahama X 0.5 2.64 3 60 1.7 lo4 0.05 0.060 0.10 

TABLE 1 

2.3. Discussion 

The numerical solution to (5) and (6) is obtained by adjusting foo (a suitable 
polynomial) until a physically plausible dependence of the circulation 27rr on 
axial position is obtained (see figure 3); thus, the interesting aspect of the solution 
is on the one hand that a physically plausible axial velocity function (f;,) is 
created in this way (figure 2(b)), on the other hand that very little freedom to  
vary this arbitrarily is left when all requirements with respect to inflexion, zero 
points, minimum and integral values are met. 

With the shape off,, chosen the magnitude of rll (or wll) is found to be almost 
proportional to Ro2/Re (cf. figure 3 ( c ) ) .  This means that rll (or better Jarll, 
which is the relative change in the angular momentum along the axis through 
a distance equal to the tube radius (see table 1)) is larger the smaller the circula- 
tion and the larger the axial volume flow. A comparison with the basic equations 
(Lewellen 1962) shows the reason to be that the model relates the axial gradient 
of the centripetal acceleration (w2/r), through the axial variation of the radial 
pressure gradient, to turbulent stress created by the radial gradient of the axial 
velocity. 

The Rossby number Ro has the additional influence on r that an increase in R o  
causes the I?, curve to approach the shape of a free vortex (see figure 3 (a) where 
the corresponding v, is shown). 

With R e  in the experimentally interesting range, the shape of I?, is very sensi- 
tive to  small changes in the radial flow (figure 3 ( b ) ) ;  the Re, range covered in the 
figure corresponds to maximum radial velocities of the order of less than 1 yo 
of the axial velocity. The origin of this effect is, as in the two-dimensional case 
(see e.g. Keyes 1961 and Ragsdale 1961), a radial influx of angular momentum. 
When a radial outflow takes place w, has a tendency to take on a concave shape 
(see [2, - 11, figure 3 (b ) ) .  A similar effect may be seen in experimental cases; it  
is caused by a radial outflow of fluid deficient in angular momentum. Analogous 
results may be obtained within the framework of existing two-dimensional 
theories. 
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It is found in the calculations that rll is almost unaffected by changes in the 
radial flow level. Thus, provided the chosen f,,-function covers the experimental 
conditions sufficiently well, it can be concluded (as a comparison with the 
fundamental equations (Lewellen 1962) shows) that radial transport of axial 
momentum is of less importance for the axial pressure gradient than turbulent 
shear stress in the axial direction, a t  any rate in the outer part of the tube. 

It should be noted that the effect on I' of a radial velocity that increases with 6 
is not taken into account in the present approximation, which is limited to linear 
li. gradients in the axial direction (see (I) for a discussion of this point). 

With rll essentially proportional to Ro2/Re the solution provides a very sensi- 
tive means of determining the Re level in any tube for which the geometry, the 
throughput, and the tangential velocity are all known quantities. The Re values 
determined in this way contain the apparent turbulent viscosity, which may 
therefore be extracted; this has been done in (I) in eleven cases from the literature. 
The turbulent viscosities obtained in this way were of the same order of magni- 
tude as those of previous quasi- two-dimensional studies (Keyes 1961 ; Ragsdale 
1961; Rosenzweig, Lewellen & Ross 1964). 

The fundamental inconsistency that the theory is developed for incompressible 
flow, while the experiments are compressible cases undoubtedly is a serious objec- 
tion to  the quantitative use of the theory. The error introduced by this simplifica- 
tion remains to be estimated. It is felt, however, that the turbulent viscosity 
estimates, referred to above, together with the test of such results made in $4 
strongly indicate that omission of density changes does not introduce serious 
order-of-magnitude errors. 

3. The total-temperature distribution 
3.1. Theory 

An approximate energy equation pertaining to the flow in typical vortex tubes 
with turbulence may, according to the analysis by Reynolds (1961) (see also 
Bruun 1967, 1969) be written 

pur ah,/ar +pwr ah,/& +p-r ah,/& 

+ a(pr.")/ar + a(pG&7)/ar + a(pwru'w')/ar N 0, (9) 
where all non-primed symbols refer to mean-time values and primed symbols to 
fluctuations about the mean; h, is the sum of the mean enthalpy and the mean 
kinetic energy per unit mass (including the mean kinetic energy of the turbulent 
motion). 

An order-of-magnitude analysis for a rather short vortex tube was carried out 
by Reynolds as follows -_ ___ 

v - O ( l ) ,  a/& N O(1), U'V' N U'W' O(i/lOo), 

ulhl - O(l/lOO) and p- N O(ljlO0). 

In  order to meet conditions in the main region of the long tubes under con- 
sideration here, the following assignments, based on Bruun (1967, 1969) are 
furthermore made 

w - 0(1/5), a/az N O(l/20) and u N O(ljlO0). 
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These assignments lead to the conclusion that (9) is quite well approximated by 

(10) 

Close to the axis with the cold flow fraction large and v N w (see figure 1 )  this 
analysis is not strictly valid; however, as mentioned by Reynolds (1961) the 
error is not likely to play an important part in the overall energy separation. 

pur shop +pwr ah,/az + a(prulhl)/ar + a(pvrzc") ar N 0. 

It is now assumed, following Kassner & Knoernschild (1948) that 
__ 
u'hl = - Eh( a h l a y  - wz/r) (11) 

and, following Deissler & Perlmutter (1960) that 
~ 

U'V' = - ~ ( a v / a r - v / r ) ,  (12)  

where 8h and E are eddy diffusion coefficients for heat and momentum transfer, 
respectively. Thus, with (11) and (12 ) )  equation (10) reads 

pur ah,/ar + pwr aho/& = (a/ar) [rpEh( a h l a y  - w2/r) + rpe( 4 av2/ar - w2/r)]. (1 3) 

A similar equation with ah,/& = 0 was used by Deissler & Perlmutter (1960) for 
studying the radial temperature gradient. Expression (13) equates the net 
transport of total-enthalpy, h,, out of a volume element (left side) with the net 
accumulation in the volume element of total-enthalpy from radial turbulent 
diffusion of enthalpy, h, and kinetic energy (right side). 

By introduction of the mean total temperature F = h,/c, approximated by 
T = f +  Qwz/cp, where f =  h/c,, on the right side of (13)) it  becomes 

with 

In the step from (13) to (14), the kinetic energy of both the secondary motion 
and the turbulent modes is neglected in T on the right side of (13). The error 
introduced is small, except close to the axis when the cold flow fraction is large. 

Now, the axisymmetrie stream function, here defined for mass flow, 

a$/ar = -pwr and a$/& = pur (16) 

is introduced together with the angular velocity 

6 = w/r. (17) 

Non-dimensional variables, as defined in 3 2 (see equation (4)), are substituted 
throughout with the change that 27rF here denotes the total mass flow through 
the tube, and with the addition that 
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T, is the total temperature of the gas entering the tube and wpo = vpo/rp (with 
vpo the peripheral tangential velocity near the tube nozzle). Equations (14) and 
(15) then become 

with a~,laT = E+P + - ~ r )  x 9 awyarl .  (19) 

Here Re, = F/(pq& rp)  and Ec 3 V ~ ~ / ( C ~  T,) (20) 

while 2/a! = r& as before, and Pr = E/€hh. Reh is a turbulent Reynolds number, 
essentially axial, Ec an Eckert number, measuring the fraction of available 
energy converted into kinetic energy, and Pr the turbulent Prandtl number. 
aT,/ar is the equilibrium total-temperature gradient which would obtain in the 
absence of secondary flow. 

In  search for an approximate solution to (18) it is noted that aT/ag (the axial 
gradient of total-temperature), according to experiment, may be quite 
adequately represented by 

aT/af; = [I+ Jw - 911 dT*ldf;, (21) 

where dT,/df; is the axial gradient of total temperature at  the periphery, i.e. 
(aTjaf;),=,, while E is a constant, which has to be determined by some averaging 
procedure. 

In solving the differential equation (18) the method of Cohen (1951) is followed. 
It is assumed that @ and w are known as functions of 7 and c. 

As a first step, the total-temperature balancc is introduced as follows 

The equation expresses the fact that the total-enthalpy is preserved in a cylinder 
(a-a in figure 1 (u)) limited by an arbitrary tube cross-section, the periphery and 
the hot end of the tube (diffusion into the region from the periphery has been 
neglected; it is usually small). The second term, the contribution from axial 
diffusion, is also small under normal conditions. ph is the total temperature of 
the hot &ream. 

In non-dimensional form (22) reads, after partial integration 

where - @h = 1 - p  is the hot flow fraction. 
By aid of (21) an. explicit expression for aT/@ is readily obtained from (18), 

which with [ constant is a first-order differential equation in 7 aT/ar, as follows 

where (25) 

and where the boundary condition (raT”ja~),=o = 0 has been used. 
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This solution to (1 8) is inserted into the enthalpy balance equation (23) to 
yield a first-order differential equation in T, or T, - Th: 

$ d(T, - T,)/d[ = - A (T, - Th) +5. 
c5 c5 

Here c5 = c ,+c ,  with 

and 

(where normally C ,  may be neglected), while 

with aT,/ay as defined in (19). 

with one integration constant to be determined. 

be calculated on the basis of (24): 

A formal solution to (26) is readily obtained, yielding an expression for T, - Th 

The solution also determines dT,ld( and, through (21), aT/a[. Thus aT/aq may 

T-Th = Tp-Th+ f'aTlayx7l. 1 ( 30) 

When this equation is differentiated with respect to ( an expression for aT/a( 
is obtained as follows 

Equations (21) and (31) represent two alternative expressions for aT/a(. These 
have to be matched as well as possible by the selection of an optimal E value. 
Since to a first approximation 

it appeared reasonable to demand, for this purpose, that 

with aT/ar determined according to (24); this choice is seen to make (31) identical 
with (21) at both y = 1 and 0. Furthermore, as E according to its definition is 
independent of 6,  it was necessary to average over this co-ordinate as well, thus 

The second averaging procedure introduces, in most cases of interest, only a minor 
mathematical inconsistency. E must be found by iteration. 
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Two parameters, the absolute temperature level and the integration constant 
in the solution to equation (26) remain to be fixed. The first is determined so that 
the mean total-temperature of the gas entering the annulus between y = yo and 
y = 1 (see figure 1 ( b ) )  at c = 0 is equal to that of the gas in the inlet nozzle 
(assuming little or no gas to escape directly to the cold exit), thus 

[I?; ( 1 - f ) a @ / a m ]  g=0 = 0. (34) 

The integration constant is determined through the parameter 

and by reference to experiment. 
It may be useful to illustrate the type of solution to the partial differential 

equation obtained here, by a simple example. For that purpose, it is assumed 
that both 31. and w are independent of 5, and that the Prandtl number Pr = 1; 
then (24) reduces to 

and (27) t80 

while (37) 

As both c1 and c5 are independent of 
differential equation (26) is 

in this simple case, the solution to the 

where C is the integration constant; when AT, = 0 

(39) 

i.e. Tp is here a simple exponential function in e. 
It should be emphasized that the solution to the partial differential equation 

(18) represented by (24) to (29)-or in the simple case, (35) to (39)-leaves no 
possibility of specifying the radial temperature distributions at  the axial 
boundaries in any detail, nor the temperature gradient a t  the periphery. Purther- 
more, the solution is of physical relevance only to the extent that the axial 
temperature gradient is reasonably well represented by (21). However, when 
agreement is attained, the solution provides a simple link between the flow field 
and the energy distribution within the tube excluding all boundary layers. In 
Linderstram-Lang (1970b) (referred to below as (11)) these points are further 
discussed. 

The methods used in the computations are outlined in (11). The secondary 
stream function ($) and the tangential velocity function employed in the calcula- 
tions are chosen among the sets devised and calculated, respectively, in the work 
on the velocity distribution (see 2). 
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3.2. Counter-$ow analogies 

Flow in typical counter-flow systems is shown in figure 4(a)  and (b), where (a )  
refers to a distillation column and ( b )  to a heat exchanger or an extraction 
column. N is the dependent variable, i.e. the concentration or the temperature; 
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FIGURE 4. Diagrams of counter-current systems. ( a )  Distillation column; 
( b )  heat exchanger or extraction column. 

G and ,uG are the mass flow rates in the two streams; p represents a transverse 
‘force’, the presence of which results in N”-N’ + 0 at equilibrium; one may 
write 

G dN“/dz = - K[(N” - N’) -PI, 
where K is a factor that measures the specific rate of either mass-component 
transport or heat transport by diffusion, across the boundary between the two 
streams. p is zero in a heat exchanger. 

The thermal, or mass component, balance equation over the section of the 
column or exchanger limited by a-a in figure 4 is written 

where, in case of figure 4 (b) ,  

Equations (40) and (41) combined give a differential equation that determines 
the concentration or the temperature change along the column or exchanger 

N” = N p  + (1 - p) Xh, (41) 

hT, = 1/(1 -/A) ( N i - p N i ) .  

dN“ K 1 --/A K 
d z - G  ,u c: (N”  - Rh) + - p. ~ - _- 

The flow in the vortex tube is in principle (according to the present model) as 
shown in figure 4(a); furthermore (40)-(42) correspond closely to (lS), (23)) and 
(26) with p determined by the radial pressure gradient. Thus it is possible to 
write (equations (29) and (27)) 

c 1 = p p  and cs=,uGIK. (43) 
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It is seen (figure 4) that cl, in the mass separator case, is the product of the 
fraction of gas moving left (towards the ‘cold end’) and the factor /3 which 
measures the equilibrium condition. In  the present case c1 is in principle the 
same applied to total-enthalpy, but it is also a complex function of 9 (the 
secondary flow function) that takes into account the effect of the interplay 
between axial flow and driving force (pressure gradient) on the peripheral total- 
temperature change. 

In  the mass separator (heat exchanger) case c5 is the mass flow towards the 
left (the ‘cold’ flow) divided by the specific rate of heat or mass-component 
transfer across the stream boundary. In  the present case it is a similar parameter; 
however, a t  the same time it is a complicated function of 3 that takes into account 
the influence of the shape (but not absolute magnitude) of the radial and axial 
total-temperature gradients on the temperature change a t  the periphery. 
- $, = 1 - p  is in all cases the net mass flow fraction through the ‘hot exit ’, to 
the right. 

The presence of the term c1 in the governing differential equations is as essential 
for successful chemical separation in distillation columns (figure 4 (a ) )  as it is for 
H the total-enthalpy separation in the vortex tube. 

3.3. Results, parameter study 

The mathematical accuracy of the solutions to the partial differential equation 
(18) obtained according to the method described in the previous sections may, 
as discussed in (11), be tested through a comparison of aT/at from (31) (with 
aT/@ determined according to (24)) with that from (21). In  cases where aT/aE is 
large compared to aT/aq, as happens at  high cold flow fraction (see below), the 
mathematical argument leading from (23) to (26) directly implies that the error 
introduced by replacing aT/ac by a linear function in 7, as is here done, is small. 

Parameters. The pertinent parameters for the description of the total- 
temperature distribution according to the present model are the Eckert number, 
Ec; the Prandtl number, Pr; the cold flow fraction, p;  the ratio of radial to axial 
mass flow, Re,,/(Ja Re,) (see equation (8), 5 2 and (11)); the Reynolds number, 
Re,; and the boundary parameter ATLX, which fixes the total-temperature distri- 
bution a t  [ = 1 relative to the temperature of the hot stream. 

In addition to the above parameters, the E parameter, which determines the 
radial gradient of aT/a(, is of primary importance for the discussion, as it is 
imperative that the optimal E values selected according to equation (33) lead to 
solutions with boundary functions that approximate those of real vortex tubes ; 
a discussion of these problems is presented in (11). In all instances tested, 
E values, quite closely correlated with experiment, have in fact been found. 
Furthermore, a meaningful comparison may be made, even though the set of 
boundary conditions derived in the calculations does not exactly match those of 
the experiments. 

The Eckert number. The effect of an increase of Ec by some factor is an increase 
of both aT/ar and aT/at by the same factor (equations (18) and (23) taking into 
consideration that Ec cancels in the calculation of E ) .  It is clear, therefore, that 
the Ec value has no qualitative influence on the results; it is a quantitative 
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measure of the kinetic energy of the gas, and in that capacity it governs the 
absolute level of the total-temperature separation potential of the tube. 

The Prandtl number. Pr ,  or rather its deviation from unity, has a modifying 
influence on the radial temperature gradients mainly at the periphery where 
adjay (equation (19)) usually is numerically large and negative (see figure 10 (a)).  
According to Shapiro (1954),  a turbulent Prandtl number of 0.7 is indicated 
experimentally; on the other hand a Prandtl number of unity has often been 
assumed. The concept, as such, has a weak theoretical basis, and there is probably 
little to distinguish between the two possibilities. Fortunately, the effect on the 
present results is unimportant (cf. figure lO(a) ) .  It should be added, that the 
treatment here is based on the assumption, first made by Kassner & Knoern- 
schild, that the turbulent motion of a lump of fluid in the radial pressure gradient 
is adiabatic. This may not be entirely true, in which case the term EcoP in equa- 
tion ( 1  9) is reduced in magnitude. 

The cold flow fraction. The influence of p on the total-temperature distribution 
in the vortex tube is of major importance. The reason is obvious when reference 
is made to the heat exchanger (or distillation column) analogy. When p, the 
fraction of cold gas, is small any large increase in total temperature with <, in the 
stream flowing in the core towards the cold exit, will lead to only a small total- 
temperature increase with < in the outer stream (compare figures 1 and 4). 
A small amount of the net total enthalpy transport across the yo boundary can 
cause the change, and a total-temperature distribution close to what may be 
termed the pseudo-equilibrium distribution, as determined by the radial flow 
(see below for a definition of this term) can be easily established and maintained 
along the tube; see figure 9 for a typical example. The performance of the tube 
as a total-enthalpy separator is under these conditions poor. 

When the cold flow fraction is increased, an increasing amount of total- 
enthalpy will have to diffuse from the cold stream to the hot in order to change 
the temperature of the former. Non-equilibrium conditions with the radial 
temperature gradient rather flat a t  intermediate $-values and even at  low 
become more probable, with the result that a substantial amount of total 
enthalpy passes the boundary between the two streams, Thus, an axial gradient 
of total-temperature is established at  all radii, though largest in the core (see 
figures 5 ,  10 and 11 for typical examples). The function of the tube as a total- 
enthalpy separator has improved. 

When the cold stream becomes substantial as p passes a value of 4, the tem- 
perature change with [ in the two streams approach one another. Any non- 
equilibrium distribution at  6 = 1 therefore tends to prevail at  all 6. The diffusion 
across the boundary will lead to a large axial total-temperature gradient, which 
may well be larger than the radial temperature gradient (see figure 12 for a 
typical example). The tube is likely to function well as a total-enthalpy 
separator. 

When the cold flow fraction goes to one, the amount of total enthalpy trans- 
ferred radially may well continue to  increase but, as most of the gas is returned 
in the core, the net amount goes to zero. At the same time the axial temperature 
change approaches it maximum, the value of which is easily found in the simple 
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case where $ and I’ are independent of 6 (equations(35) to (39)). Equation (39) 
directly gives the limiting value as 

(44) q ( 1 )  - T j m  ( = - T p )  + Th) = - (1 -exp(@h/C,)) c1/@h’c1/c5. 

The radialJlow (or Re,). The radial flow acts through the term (a@/a() ( a T / a y )  
in equation (18) as a kind of net diffusion term which counteracts, in the case 
of inflow, the effect of the pressure gradient with the result that the apparent 
equilibrium gradient on the average is smaller than aT,,/ay (see figure 5). The 

FIGURE 5. Non-dimensional total-temperature T ( = FITm ) as a fuiictionof non-dimensional 
radius 47 ( = r/r , )  (A curves); with pseudo-equilibrium distribution, referred to pcripheral 
total temperature T, for convenience (B curves) ; and equilibrium distribution, 

(aT,,/af)dq’, plus 1 for conveniencc (c curves); at axial positions [ (  = z/Z) = 0 and 1.  

Data as in table 2. 

effect of varying Re,,lRe, is shown in figure 8 for (u = 0.23; the radial flow reduces 
both the radial and the axial total-temperature gradients. The effect increases 
with decreasing cold flow fraction and dominates conditions at ,u = 0 (see below). 

The Reynolds number. Re, is a measure of the relative importance of the total- 
enthalpy transport by secondary flow and by turbulent diffusion. As such it is 
a measure of the effect of both the radial and the axial flow (through equations 
(24) and (25)) on the total-enthalpy separation. Thus, when Re, goes to zero 
because the secondary flow decreases relative to the turbulent diffusion, the 
equilibrium distribution aT,,/ay is approached a t  all y and 6 (18) or (24) as far as 
permitted by the axial diffusion represented by cz, (28). Conversely, when Re, 
goes to infinity and the secondary flow becomes of dominating importance, the 
diffusion term in equation (18) may be neglected, and there will be hardly any 
total-temperature change in the tube. 



H
 

N
 

F
ig

ur
e 

C
as

e 

5 
49

5 
6 

49
5 

7 
49

5 
8 

49
5 

9
(a

) 
39

2 
1

0
(a

) 
49

5 
ll

(a
) 

48
0 

1
2

(a
) 

49
7 

1
3

(a
) 

48
0 

1
4

(
~

)
 -
 

C
ol

d 
fl

ow
 

fr
ac

ti
o

n
 

0.
23

 
0.

23
 

0.
23

 
0.

23
 

0.
02

 
0.

23
 

0.
49

 
0.

76
 

0.
49

 
-
 

R
el

at
iv

e 
T

u
rb

. 
ax

ia
l 

R
ey

no
ld

s 
R

at
io

 o
f 

g
ra

d
. 

o
f 

E
ck

er
t 

nu
m

be
r 

R
ad

ia
l 

ra
di

al
 

ci
rc

ul
at

io
n 

U
zo

 
P

ra
n

d
tl

 
p
 

R
ey

no
ld

s 
to

ta
l 

fl
ow

 
au

 
nu

m
be

r 
T

u
rb

. 
Ja

R
%

 =
 

tu
rb

. 
fl

ow
 t

o
 

(r
ld

q
=

l 
=

 

E
c 

=
 _

_
 

cn
T

m
 

n
u

m
b

er
 

P
E

h
r1

) 
n

u
m

b
er

 
R

e,
,/J

aR
R

e,
 

(%
)q

=
l 

(e
q

u
at

io
n

 (2
0

))
 

P
r 

(e
qu

at
io

n 
(2

0
) 

R
eh

r 
(e

q
u

at
io

n
 (8

))
 (

eq
u

at
io

n
 (8

))
 

0.
11

 
0.

7 
6.

2 
1.

0 
0.

16
 

-
 0.

38
 

0.
11

 
0.

7 
6.

2 
1.

0 
0.

16
 

0.
01

 -
 0

.7
6 

0.
11

 
0.

7 
3.

11
9.

3 
1.

0 
0.

16
 

-
 0

.3
8 

0.
11

 
0.

7 
6.

2 
0.

01
2.

0 
O.

O/
O*

 3
 2 

-
 0.

3
8

 
0.

14
 

1
.0

 
20

 
2.

4 
0.

12
 

-
 0.

45
 

0.
09

2 
0.

71
1.

0 
7.

0 
1.

12
 

0.
16

 
-
 0

.3
8 

0.
09

2 
0.

7 
3.

5 
0.

35
 

0.
10

 
-
 0

6
7

 
0-

09
2 

0.
7 

7.
01

3.
5 

2.
4 

0*
34

/0
.6

8 
-
 0

.4
5 

0.
09

2 
0.

7 
3.

5 
0.

35
 

0
.1

0
 

-
 0

.5
7 

0.
09

2 
0.

7 
3-

5 
0.

70
 

0.
20

 
-
 0.

45
 

T
A

B
L

E
 

2 

TO
 

A
T

, 
=

 
J
r
0

 =
7;

, 
T,
( I

) -
 T

h
 

(f
ig

ur
e 

1
) 

0 
0.

63
 

0
 

0.
63

 
0
 

0.
63

 
0 

0.
63

 
0
 

0
.5

8
 

0 
0.

63
 

0.
0 
1
 10

. 0
 

0.
63

 
0
 

0.
63

 
0.

01
 

0.
63

 
-
 

-
 

c
*
 

E
 

F?
 

(e
q

u
at

io
n

 (
3

3
))

 
&

 F z 
2.

20
 

0.
36

12
.6

0 
1*

56
/3

-4
0 

3 
54

12
.6

 
-
 1

.3
8 

rn
 

2.
24

11
-7

6 
i
*
 

0.
92

10
.9

8 
e
 

0,
36

10
.2

7 
% z 

0.
92

 
H

 



178 C .  U .  Linderstr~m-Lung 

The effect of Re, is very slight when the cold flow fraction, p, is low, because 
(pseudo-) equilibrium is attained a t  almost all [, while a t  p = 0.25 the over-all 
effect is a reduction of the axial total-temperature gradient with increasing Re, 
(figure 7).  Note that, a t  small Re, (in figure 7), the axial total-temperature 
gradient becomes non-linear in 6,  because pseudo-equilibrium is more rapidly 
approached under these conditions. At high p the axial gradient becomes almost 
inversely proportional to Re, (see figure 12) in agreement with expression (44), 
which contains Re, in c6 of the denominator. 

FIGURE ti FIGURE 7 

FIGURE 6. Influence of axial gradient of angular velocity (or rll). Total-temperature as 
a function of radius a t  6 = 0 and 6 = 1. Case 495; input data as in figure 5 (see table 2 ) ,  
except: A curves, rll = 0; B curves, (l?ll),,=l = -0.76. 

FIGUBE 7. Influence of Reynolds number. Total temperature as a function of radius a t  
6 = 0 , g  and 1. Case 495; input data as in figure 5 (see table 2) except: Acurves, Be,Ja = 3.1; 
B curves, Re, Jct = 9.3. 

Besides the above parameters, the shape of the tangential velocity pattern is 
of importance to the total-temperature distribution. Thus, the equilibrium 
total-temperature gradient, &!&/a?, is very sensitive to changes in the radial 
distribution of the tangential velocity, i.e. q,, while the axial tangential velocity 
gradient v,,-because it leads to  a decrease in aT,,/aq with axial position-may 
produce noticeable axial total temperature gradients (at any rate a t  low p), see 
figure 6 (where, admittedly, part of the effect may be mathematical rather than 
physical). 

3.4. Comparison with experiment 

Most experiments pertain to  cases where the cold flow fraction has been zero. 
As explained above, the distribution is likely under these conditions to be the 
essentially two-dimensional distribution assumed by previous workers (Deissler 
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& Perlmutter 1960; Hartnett & Eckert 1957; Takahama 1965); any axial 
gradient of total temperature is then caused by the axial decay of w (compare 
figure 6). 

Figure 9 (a )  is an attempt to approximate the experimental distribution shown 
in figure 9 (b) .  The Ec value employed for the calculated case is the one that leads 
to the experimental overall equilibrium temperature difference, 

FIGURE 8. Influence of radial flow. Total temperature as a function of radius at [ = 0, Q and 1 
Case 495; input data as in figure 5 (see table 2 ) ,  except: Re,/Re,Ja (A curves) = 0,  
(B curves) = 0.32. 

as indicated by the dashed lines; the Re, and Rehr used are derived from the 
velocity study. The fit is by no means perfect a t  low y, especially close to 6 = 1. 
However, one feature that is well reproduced is the axial total-temperature 
gradient a t  the periphery, aT,/dg, which comes out negative both in calculations 
and experiments. The reason for this cross-over phenomenon is, according to  
the model, that the outer part of the tube in this case acts as a concurrent system 
(see discussion in (11)). 

There are two obvious reasons for the discrepancy between figure 9 (a )  and (b) .  
Either the axial boundary conditions a t  6 = 1 are not identical in the two cases, 
and the agreement a t  lower ,$values is attained because the experimental system 
quickly adjusts to the quasi-equilibrium condition. Or, the radial inflow is not 
constant but increases with axial position, so that the quasi-equilibrium gradient 
becomes less steep with 6. The present model does not permit a demonstration of 
this effect, as it is limited to $- functions that are linear in 6. 

,u = 0.23. The conditions are rather different a t  this cold flow fraction. The 
model calculations show that the axial temperature gradient accounts for the 
major part of the diffusion term in equation (18)) except near 5 = 0 where the 

12-2 
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pseudo-equilibrium gradient obtains (see figure 5 ) .  In figure 10, a comparison 
with experiment is carried out; Re, is taken from 4, while Re,,/Re, is derived 
from experiment. The correlation is quite satisfactory, though the radial gradient 
definitely is too steep a t  low q. 

I 
1.0 

0.9 

0.8 

FIGURE 9. Comparison of calculated and experimental total-temperature distributions at  
cold flow fraction ,u z 0, for 5 = 0.06 (i), E = 0.34 ( j ) ,  and [ = 1.0 (k). Eccalc chosen to give 
same avorage equilibrium total-temperature gradients (dashed lines) in figures (a )  and ( b ) .  
Ratio of radius to length of region I (figiiro 1 )  ,/a (= r,/Z) = 1/12, PT = 1. (u)  Case 392; data 
as in table 2. ( b )  Case I, Hartnett & Eckert; data as in table 1.  

1 -0 

0.9 

0.8 

Th 
. B  
' A  
1 

- Th 

1 

FIGURE 10. Comparison of calculated and experimental total-temperature distributions at 
,u = 0.23 for 5 = 0.15 (I) ,  5 = 0.53 ( j ) ,  and 5 = 1.0 (k). Dashed straight lines indicate average 
eqiiilibrium total-temperature gradients. ,/a = 1/10*4. ( a )  Case 495; A curvw Pr = 0.7, 
B CLXVOS Pr = 1; Ec determined as in figure 9(a); data as in table 2. ( b )  Case VII, Rruun; 
data as in hble 1. 
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p = 0.5. A t  this cold flow fraction the tube approaches optimal operation as 
a total-enthalpy separator, and aT/a( is quite appreciable. In  figure 11 ( b ) ,  an 
experimental case is shown that may be somewhat atypical in that the gas 
moving into the central region at < = 1 has a higher total temperature than the 
gas moving in the other direction in the outer annulus. Under normal conditions 
motion towards the centre, accompanied by a flow reversal, as must take place 
to some extent beyond region I (i.e. in region IV of figure 1)) will lead to a lowered 
total temperature, as also happens in analogous experiments by Takahama & 
Kawashima (1960). It is tempting to relate the ‘anomalous ’ effect in figure 11 ( b )  
to the occurrence of a ‘vortex breakdown’ (Benjamin 1962) or to a ‘hot spot’ 
(Stone & Love 1950) in region IV. 

1.1 

Th 

B 
A 

T 
1 -0 

0.9 

1.1 i- 

FIGURE 11. Comparison of calculated and experimental total-temperature distributions at  
p = 0-49 for 5 = 0.17 (i), 6 = 0.59 (j), and 5 = 1-0 (k). Dashed straight lines indicate average 
equilibrium total-temperature gradients. ~ C L .  = 1/14.5, Pr = 0.7. (a )  Case 480; A curves 
AT, = 0.01; B curves AT, = 0. Ec determined as in figure 9(a); data as in table 2.  ( b )  Case 
VIII, Scheller & Brown; data as in table 1. 

It is seen from figure l l (a)  that adjustment of the AT, parameter to the 
experimental T,( 1) - T, value leads to a satisfactory reproduction of the experi- 
mental distribution in figure l l(b).  It is worth noting that the Re,  value 
employed is the best value according to the results in $4.  

p = 0.76. No experimental T values at this cut have been available to the 
aut,hor; however Suzuki (1960) provides some velocity data at  p = 1, which are 
helpful in the choice of an appropriate tangential velocity distribution (figure 
12(b)). Figure 12 (a) shows a calculated temperature distribution. aT/a( is now 
large compared to aT/av and, as discussed already, Re, has a major influence on 
the axial temperature gradient. 

The total-enthalpy separation is caused by turbulent transport of both heat 
and kinetic energy. Figure 13 gives an impression of the relative importance of 
the two contributions: the larger the difference is between the slopes of two 
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corresponding A and B curves at a given q value, the stronger the diffusion 
current. Thus, it may be deduced by a comparison of figures 13 (a)  and ( b )  that the 
kinetic energy diffusion contributes most to the total-temperature separation at  
radii close to the periphery, while heat diffusion dominates near the centre axis; a 
conclusion also reached by Reynolds (1961). The results in figure 13 indicate that 

1.1 

T 
1.0 

FIGURE 12. p = 0.76. (a) Calculated total-temperature distribution at 5 = 0 (i), 4 (j) and 
1 (k). A curves, Re, Jcx = 7; B curves, Re,,/a = 3.5. Data as in table 2. ( b )  Corresponding 
secondary Bow (Re,/(Re,,Ja) = 0.34) and tangential velocity distributions; see 0 2. 

FIGTJRE 13. (a )  Calculated non-dimensional static temperature t ( = t/T,) as a function of 
radius (A curves); with equilibrium (adiabatic) static temperature distribution, referred to 
1.0 at  q = 1 for convenience (B curves); at  E = 0 and 6 = 1. ( b )  Difference between calculated 
total- and static-temperatures (T - t )  as a function of radius (A curves) with equilibrium 
curves (B) referred to 1.0 at q = 1 for convenience; at 6 = 0 and 6 = 1.  Case 480; data as in 
figure 11 (a), AT,, = 0.01 (see table 2). 
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the axial decay of tangential velocity in the outer part of the tube may a t  high 
lead to an enhanced outward transport of kinetic energy that is partly compen- 
sated by an inward transport of heat. 

1.1 

Th 

1.0 

Tc 

0.9 

I 

I 

"C 

118 

p, 

18 

pc 

- 82 

FIGURE 14. Temperature separation as a function of cold flow fraction, p. (a)  Cdcnlated 
curve, data as in table 2. ( b )  Data from Hilsch (1946). 

The overall temperature separation as calculated from the above examples 
is compared with experiment in figure 14. At highp the trend should be realistic; 
thus, the upward concave tendency of both curves is readily explained by the 
theory. A close fit with experiment a t  low cold flow fraction is, however, not to 
be expected as the influence of the (poorly defined) radial flow and that of 
uncertain axial boundary conditions have been shown above to be rather great 
under these conditions. Only the typical decreasing performance of vortex tubes 
as ,u approaches zero is reproduced quite well in figure 14 (a).  This is achieved by 
permitting a central flow into the tube proper through the cold end orifice. Such 
reversed flow on the axis is known to exist when p = 0 and it is likely to persist 
a t  p somewhat greater than zero. If the net flow out of the cold exit is small 
enough compared to the total flow in the duct, the cold stream temperature will 
rise to close t o  the inlet temperature, so that a small, orvanishing,net temperature 
difference is the result. 

4. Performance 4.1. The value increase 

By analogy with a procedure adopted in case of mass separation (Cohen 1951) 
the performance of a vortex tube is equated to a 'value increase' that the gas is 
said to experience while passing through the tube; i.e. it is assumed that any 
stream of gas has a value, A ,  which is the product of a specific value-function, V ,  
and the amount, G, of gas in the stream; where V is some function of the total- 
temperature of the stream to be determined later (equations (52), (53)). The 
'value increase 'over the vortex tube is then (with normalized total-temperatures) 

AA ~ ~ T F [ ~ V ( T , ) + ( ~ - P U )  V(Th)- V(l)], (45) 
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while the infinitesimal value-increase over a volume element in the tube is 

d A  = $ V ( T )  SGdq 
U 

where the integration is over the surface of the volume element and 6G da is the 
mass flow normal to and through the surface dcr, i.e. 

fU 6Gdu = 0. 

The integral of d A  over any finite region of the tube 

A A  = / / I d .  

(47) 

is seen t o  be the net value-increase over the region. When the whole tube is 
considered, (48) beconies identical with (45). 

Expansion of V ( T )  in (46) in a Taylor series about zt fixed point of total 
temperature T* within the volume element, and use of (47), lead to 

d A  = (dVT/dT),, T6Gdu. fU (49) 

The integrand to the right is seen to be the net transport of total-enthalpy 
(divided by T,) out of the volume element by secondary flow; thus, according 
to (14) or (18) in the previous section, and with the introductiori of non- 
dimensional quantities throughout, 

Insertion of this expression into (48) referred to the whole of region I, figure 1,  
and partial integration lead to 

(with the integration over the angular co-ordinate carried out). d, is a measure 
of the value-change due to diffusion through the peripheral wall; experiments 
have shown this contribution to the functioning of the tube to be unimportant; 
consequently the term will be neglected. 

Expression (51) is valid regardless of the form chosen for the specific value- 
function V ;  the simplest choice possible is therefore made, i.e. 

d2V/dT2 = 1, ( 5 2 )  

which integrated twice and with suitable integration constants gives 

V = $(T - 1)2. 

Thus (45) may be written 
(53) 

A A / ~ I T ~ '  = p+(T,- 1 ) 2 +  (I -p)&(Th- 1)'. (54) 

The availability of a cooling machine is, when the temperature drop is not 
too large, u:: = .,/(c, to)  = &/to - 1)2) ( 5 5 )  
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where to and t, are the temperatures of the gas before entering and after leaving 
the machine, respectively. As the vortex tube may be said to act as a heating as 
well as a cooling machine, it is justified to call the value increase AAl2nrF in (54) 
the availability of the tube. Thus it must be permissible, at any rate to a first 
approximation, to compare the efficiency of the tube with other cooling devices 
through the use of expressions such as (51). 

From (51) which is difficult to use in practice, the absolute maximum for the 
value-increase of a tube, AAmax is easily derived. The condition to be fulfilled is 
that - aT/ar(aT/ar - aT,,/ar) is a maximum everywhere in the tube; thus 

which leads to 

In the simple case where w ,  the angular velocity, may be considered as 
independent of 7 and 5 

AA,,,/SnF = Ec2/4Re,,/a or AA,,, = &dph(vg/c, T,)2. ( 5 8 )  

In  two experimental cases (Bruun 1967, 1969; and Scheller & Brown 1957) 
AA,,, is found to be a factor of two and five, respectively, as large as the actual 
performance of the tubes calculated on the basis of equation (54). (The low 
efficiency of the second tube is caused by the presence of an unfavourable aT/@ 
at high [, the origin of which is discussed in 5 3.) 

Thus, equation (57) or (58) permits a relatively simple evaluation to be made 
of the vortex tube as a temperature separator. The expressions should, however, 
be used with caution as the various factors are interdependent. For example, an 
increased turbulent diffusivity would almost certainly lead to smaller tangential 
velocities, so that the apparent prediction of (58) that improved performance 
results if the turbulence level is increased, may not be borne out in practice. 

4.2. The turbulent diffusivity 

If (48 ) ,  referred to region I, figure 1, is written 

AA/2nF = [A( 1)  - A(O)]/2grF (5  9) 

with 

equations (59) and (51) are seen to be alternative expressions for the availability 
of region I, where only (51) contains the parameter Re,. Thus, in cases where 
sufficient temperature and velocity data are available, (51) and (59) combined 
may provide estimates of Re, and thereby the turbulent thermal diffusivity. 
Equation (59) rather than (54) should be used because value-changes outside 
region I may take place. Estimates of this kind have been made in 5 cases, the 
results of which are shown in figure 15. Also shown are the equivalent results 
obtained on the basis of a quantitative analysis of the different terms in (18) 
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of 5 3 over a tube cross-section. A discussion of the accuracy obtained by these 
two procedures is presented in Linderstr~m-Lang (19704.  

The abscissa in figure 15 is the Reynolds number, Re, as obtained in 52  from 
the axial decay of tangential velocity. Thus the correlation displayed in the 
figure shows the treatments in 552 and 3 to be mutually consistent as regards 
turbulent diffusivities. 

10 
10 

Re 
103 

FIGURE 15. Correlation of Reynolds numbers, Re, from axial gradient of tangential velocity 
($2 )  with Reynolds numbers, Re,, from temperature distribution ( $ $ 3  and 4). Roman 
numerals refer to data in table 1. Solid points, Re, determinations from value-increase; 
open points, Reh determinations from energy equation. Circles around points indicate range 
of values obtained. The line drawn assumes a turbulent Prandtl number of 0.7. 
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